MATH 2028 Honours Advanced Calculus II
 2023-24 Term 1
 Problem Set 7
 due on Nov 17, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: All surfaces are contained inside \mathbb{R}^{3} with rectangular coordinates (x, y, z). We use U to denote a bounded open subset of \mathbb{R}^{2}.

Problems to hand in

1. Let $a>0$ be a fixed constant. Find the area of the portion of the cylinder $x^{2}+y^{2}=a^{2}$ lying above the $x y$-plane and below the plane $z=y$.
2. Let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$. Calculate $\int_{S} x^{2} d \sigma$. (Hint: make use of the symmetry)
3. Let S be the portion of the plane $x+2 y+2 z=4$ lying in the first octant of \mathbb{R}^{3}, oriented with outward normal pointing upward. Find
(a) the area of S,
(b) $\int_{S}(x-y+3 z) d \sigma$,
(c) $\int_{S} F \cdot \vec{n} d \sigma$ where $F(x, y, z)=(x, y, z)$.
4. Let S be the portion of the helicoid given by the parametrization $g(u, v):(0,1) \times(0,2 \pi) \rightarrow \mathbb{R}$ by

$$
g(u, v)=(u \cos v, u \sin v, v)
$$

Suppose S is oriented by the upward pointing unit normal \vec{n}. Compute $\int_{S} F \cdot \vec{n} d \sigma$ where $F(x, y, z)=(0, x, 0)$.

Suggested Exercises

1. Find the area of the portion of the cone $z=\sqrt{2\left(x^{2}+y^{2}\right)}$ lying beneath the plane $y+z=1$.
2. Find the area of the portion of the cylinder $x^{2}+y^{2}=2 y$ lying inside the sphere $x^{2}+y^{2}+z^{2}=4$.
3. Find the flux of the vector field $F(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)$ outward across the given surface S (all oriented with outward pointing normal pointing away from the origin, unless otherwise specified):
(a) S is the sphere of radius a centered at the origin.
(b) S is the upper hemisphere of radius a centered at the origin.
(c) S is the cone $z=\sqrt{x^{2}+y^{2}}, 0<z<1$, with outward pointing normal having a negative z-component.
(d) S is the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$.
(e) S is the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$, along with the disks $x^{2}+y^{2} \leq a^{2}, z=0$ and $z=h$.
4. Calculate the flux of the vector field $F(x, y, z)=\left(x z, y z, x^{2}+y^{2}\right)$ outward across the surface of the paraboloid S given by $z=4-x^{2}-y^{2}, z \geq 0$ (with outward pointing normal having positive z-component).
5. Compute $\int_{S} F \cdot \vec{n} d \sigma$ where $F(x, y, z)=(x, y, z)$ for each of the following surfaces in \mathbb{R}^{3} (all oriented with the outward pointing unit normal pointing away from the origin):
(a) the sphere of radius a centered at the origin,
(b) the cylinder $x^{2}+y^{2}=a^{2},-h \leq z \leq h$,
(c) the cylinder $x^{2}+y^{2}=a^{2},-h \leq z \leq h$, together with the two disks $x^{2}+y^{2} \leq a^{2}, z= \pm h$,
(d) the cube with vertices at $(\pm 1, \pm 1, \pm 1)$.
6. Repeat the question above for the vector field $F(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(x, y, z)$.
7. Prove that the area of a graphical surface S given by $z=f(x, y)$, where $f: U \rightarrow \mathbb{R}$ is a C^{1} function, is given by

$$
\operatorname{Area}(S)=\iint_{U} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d A
$$

Challenging Exercises

1. Prove or give a counterexample: If S is an orientable surface, then there are exactly two possible orientations on S.
2. Let $\alpha, \beta, f:[0,1] \rightarrow \mathbb{R}$ be C^{1} functions with $f(t)>0$ for all $t \in[0,1]$. Suppose that S is a surface in \mathbb{R}^{3} whose intersection with the plane $z=t$ is the circle

$$
(x-\alpha(t))^{2}+(y-\beta(t))^{2}=(f(t))^{2}, \quad z=t
$$

for each $t \in[0,1]$ and is empty for $t \notin[0,1]$.
(a) Set up an integral for the area of S.
(b) Evaluate the integral in (a) when α and β are constant functions and $f(t)=(1+t)^{1 / 2}$.
(c) What form does the integral take when f is constant and $\alpha(t)=0$ and $\beta(t)=a t$ where a is a constant?

